Intelligent Hybrid Approach for Android Malware Detection based on Permissions and API Calls

نویسندگان

  • Altyeb Altaher
  • Omar Mohammed Barukab
چکیده

Android malware is rapidly becoming a potential threat to users. The number of Android malware is growing exponentially; they become significantly sophisticated and cause potential financial and information losses for users. Hence, there is a need for effective and efficient techniques to detect the Android malware applications. This paper proposes an intelligent hybrid approach for Android malware detection using the permissions and API calls in the Android application. The proposed approach consists of two steps. The first step involves finding the most significant permissions and Application Programming Interfaces (API) calls that leads to efficient discrimination between the malware and good ware applications. For this purpose, two features selection algorithms, Information Gain (IG) and Pearson CorrCoef (PC) are employed to rank the individual permissions and API’s calls based on their importance for classification. In the second step, the proposed new hybrid approach for Android malware detection based on the combination of the Adaptive neural fuzzy Inference System (ANFIS) with the Particle Swarm Optimization (PSO), is employed to differentiate between the malware and goodware Android applications (apps). The PSO is intelligently utilized to optimize the ANFIS parameters by tuning its membership functions to generate reliable and more precise fuzzy rules for Android apps classification. Using a dataset consists of 250 goodware and 250 malware apps collected from different recourse, the conducted experiments show that the suggested method for Android malware detection is effective and achieved an accuracy of 89%. Keywords—Android malware detection; features selection; fuzzy inference system; particle swarm optimization

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detection of Malware on Android based on Application Features

Threat of mobile malware is increasing day by day. Since Android is the most popular and maximum sold mobile phone, there is an increasing threat of malware on Android based mobile device. The different antimalware products available in market can detect the malware in its original form. But they cannot detect the malware after applying some form of obfuscation or transformation to the malware....

متن کامل

DroidMat: Android Malware Detection

Recently, the threat of Android malware is spreading rapidly, especially those repackaged Android malware. Although understanding Android malware using dynamic analysis can provide a comprehensive view, it is still subjected to high cost in environment deployment and manual efforts in investigation. In this study, we propose a static feature-based mechanism to provide a static analyst paradigm ...

متن کامل

On Robust Malware Classifiers by Verifying Unwanted Behaviours

Machine-learning-based Android malware classifiers perform badly on the detection of new malware, in particular, when they take API calls and permissions as input features, which are the best performing features known so far. This is mainly because signature-based features are very sensitive to the training data and cannot capture general behaviours of identified malware. To improve the robustn...

متن کامل

DyVSoR: dynamic malware detection based on extracting patterns from value sets of registers

To control the exponential growth of malware files, security analysts pursue dynamic approaches that automatically identify and analyze malicious software samples. Obfuscation and polymorphism employed by malwares make it difficult for signature-based systems to detect sophisticated malware files. The dynamic analysis or run-time behavior provides a better technique to identify the threat. In t...

متن کامل

Learning and Verifying Unwanted Behaviours

Unwanted behaviours, such as interception and forwarding of incoming messages, have been repeatedly seen in Android malware. We study the problem of learning unwanted behaviours from malware instances and verifying the application in question to deny these behaviours. We approximate an application’s behaviours by an automaton, i.e., finite control-sequences of events, actions, and annotated API...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017